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REFERENCE NO  ABSTRACT 

MULT-03  Multi-objective optimization (MOO) is of immense importance in majority 
of engineering applications. In previous study a MOO strategy was 
performed for optimizing the performance and total cost of a trigeneration 
system with an HCCI engine as prime mover based on NSGA-II method. 
The current study presents a novel multi-heuristic system (MHS) to provide 
a metaheuristics collaboration framework for determining the best design 
parameters. The offered MHS works on a proposed strategy and prefers 
short runs of different metaheuristics instead of one single long run of a 
single metaheuristic. The introduced system optimizes two objective 
functions of the problem in which it maximizes the exergy efficiency and 
minimizes the system cost. The obtained results demonstrated that by 
employing the proposed MHS method a further increase and reduction in 
exergy efficiency and the sum of the unit costs of the system products are 
achieved respectively compared to the previous study. 
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1. INTRODUCTION 
Every day large amounts of energy are wasted 
from industrial plants and exhaust gases are 
released to the atmosphere. These energy 
losses reduce the efficiency of the plants and 
also increase the costs of production. 
Therefore, waste heat recovery through the 
utilization of cogeneration systems (heat and 
power) or trigeneration systems (power, heat 
and cooling) are getting more attraction. 
Numerous studies have been published in the 
literature to improve the design of energy 
conversion systems to get higher energy and 
exergy efficiencies [1, 2, 3].  Optimization of 
energy systems only from the 
thermodynamics point of view or the 
economic point of view, such as optimizing 
the system based on a single objective 
function like exergy or economic concepts 
may result in an increase in the overall costs 
of the system or a reduction in exergy 
efficiency of the system, respectively. In this 
regard, multi-objective optimization is 
considered as a power full tool to improve 
both exergy efficiency and cost criteria of the 
energy systems simultaneously. Multi-
objective optimization algorithms are 
designed, created and applied to extract a set 

of solutions which demonstrate a set of 
feasible and good solutions to satisfy the 
problem objectives. Examples for the 
multiobjective optimization of energy systems 
are as follows. 
Khaljani et al. [4] proposed a combined cycle 
based on an HCCI (Homogenous Charge 
Compression Ignition) engine heat recovery 
employing two organic Rankine cycles. 
Authors performed a multi objective 
optimization based on Non-dominated sorting 
genetic algorithm-II to achieve the best 
system design parameters from both 
thermodynamic and economic aspects. 
Optimization results indicate that the exergy 
efficiency of the cycle increases from 44.96% 
for the base case to 46.02%. Also, 
approximately1.3% reduction in the cost 
criteria is achieved. Results of the multi-
objective optimization justify the results 
obtained through the parametric study and 
demonstrate that the design parameters of 
both ORCs have conflict effect on the 
objective functions. 
 
Hajabdollahi et al. [5], modeled and optimized 
an organic Rankine cycle for diesel engine 
waste heat recovery by NSGA-II. In this 
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work, four refrigerants including R123, 
R134a, R245fa and R22 were considered as 
working fluids. The optimization results 
showed that R123 is the best working fluid in 
both economic and thermodynamic aspects 
and R245fa, R134a and R22 have the next 
ranks, respectively. 
 
Wang et al. [6], optimized an organic Rankine 
cycle through a multi-objective optimization 
process based on NSGA-II. The work 
considered exergy efficiency and capital cost 
as objective functions. The optimization 
results showed that the optimum value of the 
turbine pressure was between 1.8 and 2.3 MPa 
and the optimum value of the turbine inlet 
temperature was 90_C. 
 
In another study done by Feng et al. [7], a 
RORC (regenerative organic Rankine cycle) 
and a BORC (basic organic Rankine cycle) 
were optimized by using the NSGA. Results 
showed that improvement of the exergy 
efficiency increases the LEC (levelized energy 
cost). In addition, it was found that the 
optimum exergy efficiency and LEC for the 
Pareto optimal solution of the RORC were 
approximately 8.1% and 21.1% higher than 
those of the BORC, respectively.  
 
Jamali  et al [8] proposed a combined cycle 
based on the Brayton power cycle and the 
ejector expansion refrigeration cycle and 
carried out  a complete optimization study is 
carried out using a multi-objective 
evolutionary based genetic algorithm 
considering two different objective functions, 
heat exchangers size (to be minimized) and 
exergy efficiency (to be maximized). 
Ahmadi et al used a multi-objective 
optimization method based on a fast and elitist 
NSGA-II (nondominated sorting genetic 
algorithm) to determine the best design 
parameters for a novel biomass-based 
integrated energy system. 
 
Other examples for multi-objective 
optimization of integrated energy systems are 
particle swarm optimization algorithm [9,10], 
linear programming optimization [11,12,13] 

and mixed integer non-linear programming 
algorithm [14]. 
In a previous study by authors [16] a 
parametric study and multi-objective 
optimization strategy using NSGA-II carried 
out for a tri-generation system. The system is 
based on the utilization of waste heat from the 
HCCI engine, to generate power and cooling 
via an ammonia-water mixture (AWM) cycle. 
By considering exergy efficiency and sum of 
the unit costs of the system products as the 
objective functions, a 16.34% increase in 
exergy efficiency and about 10% reduction in 
cost criteria were achieved, respectively. In 
order to further improve the overall 
performance of the system, this study uses a 
novel metaheuristic collaboration framework 
containing the implementations of a number 
multi-objective metaheuristics cooperatively 
work on shared solution population. It 
maximizes the exergy efficiency and 
minimizes the system cost. In the proposed 
multi-heuristic system, some of metaheuristics 
which are well-known by their success are 
selected to be applied. The selected 
metaheuristics are Non-dominated Sorting 
Genetic Algorithm (NSGA II) [17], Multi-
objective Differential Evolution (MODE) 
[18], Strength Pareto Evolutionary Algorithm 
(SPEA 2) [19] and Multi-objective Particle 
Swarm Optimization (MOPSO) [20]. 
Comparative analysis of the obtained results 
illustrated that the proposed MHS achieves 
better performance than the previous work. 
The rest of this paper is organized as follows: 
Principles of multi-objective metaheuristic 
algorithms within the proposed system are 
briefly expressed in Section 2. Section 3 
expresses the problem definition in details. 
Fully description of the proposed MHS for 
multi-objective optimization is presented in 
Section 4. Section 5 includes description of 
algorithm parameters, results and comparative 
analysis. Section 6 presents conclusions and 
some future research directions. 
 
2. BRIEF DESCRIPTIONS OF 
METAHEURISTICS USED WITHIN THE 
PROPOSED MHS 

 



 
2.1 Non-dominated Sorting Genetic 
Algorithm (NSGA II)  
Non-dominated sorting genetic algorithm 
(NSGAII) is a well-known evolutionary multi-
objective optimization algorithm developed in 
2002 by K. Deb et al. [17]. NSGAII applies 
elitism and crowding operators to preserve 
high-quality solutions and increase spread 
along the Pareto front. NSGAII starts with a 
randomly initialized population and computes 
the ranks of solutions such that the rank of a 
solution is the number of other population 
elements dominating this particular individual. 
In fact, each rank represents a particular 
Pareto front in objective space. Accordingly, 
all solutions are sorted in increasing order of 
their ranks and they are assigned a rank-
fitness proportional to their levels or fronts. 
Then, the algorithm uses the computed 
fitness-ranks and applies selection, crossover 
and mutation operators to create the offspring 
population. At the end of each generational 
step, parent and offspring populations are 
combined, ranks of solutions are computed 
and the new population is filled from ranked-
sets in increasing order of rank values. If the 
number of elements of the latest rank exceeds 
the remaining space to be filled, the some of 
its elements are eliminated based on crowding 
distance criterion. The above described 
procedural steps are repeated until predefined 
termination criteria are satisfied. For the 
problems having strong parameter 
interactions, NSGAII is effective in extracting 
Pareto fronts closer to the optimal one. A 
detailed description of the NSGAII algorithm 
can be found in [17]. 
 
2.2 Multiobjective Differential Evolution 
(MODE)  
In general, multi-objective implementations of 
differential evolution are based on extension 
of the single-objective differential evolution 
(DE) algorithm. MODE, proposed by Xue et 
al. [18], has similarities with the DE variant 
DE/best/1/bin. The proposed method 
implements a Pareto based approach for the 
selection of the best individual as follows: if 
the trial solution is dominated, then the best is 

randomly chosen from subset of non-
dominated solutions. If the trial solution is 
non-dominated, then it is chosen as the best 
individual. For the purpose of population 
management, the authors used a (μ+λ)-
selection strategy, Pareto ranking and 
crowding distance mechanisms are used to get 
solutions that have a well spread along the 
computed Pareto Front. MODE is used to 
solve unconstrained problems of high 
dimensionality and it is shown to generate 
improved solutions compared to SPEA 
algorithm.  
 
2.3 Multi-objective Particle Swarm 
Optimization (MOPSO)  
Coello et al. proposed the multi-objective 
particle swarm optimization (MOPSO) 
method that extends the standard PSO 
algorithm to deal with multi-objective 
optimization problems [20]. This method 
maintains an external global repository to 
store the non-dominated solutions extracted 
within the algorithm. MOPSO also uses the 
concept of Pareto dominance to determine the 
flight direction. An important issue in 
MOPSO algorithm is the generation of 
hypercubes in which coordinates of a particle 
is defined with respect to its objective 
function values. These hypercubes are then 
used to determine a repository element that 
acts as the global best solution in velocity 
computation of the particle under 
consideration. For this purpose, fitness values 
of hypercubes are first scaled inversely 
proportional to their cardinality and the one 
from which the global best will be taken is 
determined through roulette wheel selection. 
Detailed description of the MOPSO is 
presented in [20]. 
 
 
2.4 Strength Pareto Evolutionary Algorithm 
(SPEA2) 
Strength Pareto Evolutionary Algorithm is an 
evolutionary multi-objective optimization 
method proposed by Zitzler et al. [19]. The 
algorithm uses a regular population and 
maintains an external archive for storage of 
non-dominated solutions. Each archive 



element  A(i) is assigned a strength value S(i) 
which is equal to the number of population 
elements that are dominated by or equal to 
A(i). For archive elements, S(i) also 
represents the  fitness value FA(i) of A(i). For 
a population element P(j), its fitness FP(j) is 
calculated from the sum of S(i) values of 
archive members that dominate or equal to 
P(j). A one is added to this sum to avoid zero 
fitness values. These fitness values, FA(i) and 
FP(j), are called the raw fitness and they may 
cause ranking difficulties when most 
individuals do not dominate each other. To 
solve this problem, SPEA2 introduces density 
information to differentiate between 
individuals having identical raw fitness values 
and actual fitness of an individual is taken as 
the sum of its raw fitness and the density 
information.  Following the actual fitness 
computation, external archive is updated by 
extracting non-dominated solutions from 
union of population and old archive members. 
Finally, a mating pool is formed using 
updated archive elements through binary 
tournament selection and offspring individuals 
are generated with crossover and mutation 
operators.  Experimental evaluations over sets 
of well-known test problems demonstrated 
that SPEA2 achieved a success similar to that 
of NSGAII. 
 
3. Problem definition 
Figure 1 displays the schematic diagram of the 
considered trigeneration system. The engine 
intake air is first compressed to and then flows 
into two intercoolers. Exhaust gases leaving 
the engine are expanded in turbine 1 to 
produce the required work for the compressor. 
The bottoming cycle is an ammonia-water 
cogeneration cycle which recovers the energy 
content of exhaust gases at a temperature of 
525.1 K. The AWCC which produces power 
and refrigeration simultaneously is actually a 
combination of the Rankine and absorption 
refrigeration cycles. Ammonia solution with 
low pressure and basic concentration (state 
point 11) is pumped to a high pressure. After 
being heated in the heat exchanger, the 
solution enters the generator where it is 
separated into weak solution (with less 

ammonia concentration) and ammonia-rich 
vapor. The vapor is then sent to the condenser 
1 before being condensed to liquid in 
condenser 2. On the other hand the weak 
ammonia-water solution exiting the generator 
is delivered to the boiler where it is heated and 
becomes saturated vapor before being 
superheated in the super heater. The 
superheated vapor is then expanded in the 
turbine 2 to produce power. The liquid 
ammonia from condenser 2 goes to the 
evaporator through the expansion valve to 
cool the space to be refrigerated. The low 
pressure ammonia vapor exiting the 
evaporator passes through the absorber where 
it is absorbed by the ammonia-water solution 
coming from the condenser 1 and the turbine 
2. Finally the basic ammonia-water saturated 
liquid is formed and thus the cycle is 
completed. 
In order to evaluate the system from 
thermodynamic point of view, the 
conservation of mass principal along with the 
first and second laws of thermodynamics are 
applied to each component of the system 
which is considered as a control volume. The 
detailed description of the system and the 
energetic, exergetic, and exergoeconomic 
relations for the components of system were 
provided in the previous studies [15, 16]. The 
purpose of the study is achieving higher 
exergy efficiency (η(II,AWCC)) while reducing 
the sum of the unit costs of the system 
products (c(p,total)). In this work AWMT       
inlet pressure (P(in,AWM Turbine)), Generator 
temperature (TGen), Ammonia mass fraction in 
basic solution (Xb), Pinch point temperature 
difference (ΔTPinch), Turbine isentropic 
efficiency (ηT) are selected as decision 
variables. 
 



Fig1. Schematic diagram of the tri-generation system 
[15]. 

 
4. The proposed multi-heuristic system 
for optimizing the ammonia-water 
power/cooling cycle coupled with an HCCI 
engine 
This section expresses the proposed multi-
heuristic system (MHS) based on a novel 
collaboration mechanism for the solution of 
multi-objective ammonia-water power/cooling 
cycle optimization problem. As shortly 
mentioned above, the proposed system 
includes four multi-objective metaheuristics 
which cooperatively work on shared solutions 
to maximize the exergy efficiency and 
minimize the system cost. Architectural 
description of the proposed system is 
presented in Fig. 2. 
 

 

Fig. 2. Architectural description of the proposed multi-
agent system. 

 
The proposed multi-heuristic system (MHS) 
comprises one fixed sized population, one 
global archive and four metaheuristics with 
local archives embedded. The system works 
iteratively in sessions consisting of two 
consecutive steps: in the first step, the 
population of solutions is shuffled and split 
randomly into four equal sized 
subpopulations. Later on, subpopulations are 
supplied to the metaheuristics one for each. In 
the second step, each metaheuristic is applied 
to operate on its own subpopulation of 
solutions. An epoch begins with a new 
assignment of metaheuristics and ends up 
when termination criteria are satisfied. 
Individual metaheuristics have their own local 
archive which must be cleared in the 
beginning of each epoch. The local archives 
are updated during the metaheuristic ececution 
and used to keep all non-dominated solutions 
extracted in an epoch, whereas the system 
encompasses a global archive to keep all non-
dominated solutions found by all 
metaheuristics in all epochs. That is to say, 
global archive resembles the Pareto-Front 
resulted by merging all local archives with the 
global archive at the end of each epoch. The 
system combines global archive current 
contents with the new local archives and 
eliminates those dominated solutions from this 
combination. Meanwhile, at the end of each 
epoch, all subpopulations are merged to 
construct a global population to be used in 
next epoch. In that fashion, all metaheuristics 
collaborate with each other by sharing their 
search experiences through aggregating the 
improved subpopulations and extracted local 
archives in a common population and in a 
common global archive respectively. 
Currently, the proposed multi-heuristic system 
comprises four metaheuristics, namely 
NSGAII, SPEA2, MODE and MOPSO. The 
proposed multi-heuristic system prefers short 
runs of different metaheuristics instead of one 
single long run of a single metaheuristic. This 
way, metaheuristics will be able to cover the 
inabilities of other metaheuristics in extracting 
more promising parts of search space. 
However the proposed system is flexible 



enough to add a new multi-objective 
metaheuristic or remove an existing one. All 
metaheuristics in the proposed system use the 
same solution representation; therefore there 
is no need to convert solutions when they are 
exchanged between different metaheuristics in 
the system. Effectiveness of the obtained 
multi-heuristic system is investigated in the 
next section. Results presented in tables 
clearly demonstrate that the all goals on the 
design of the proposed multi-heuristic system 
are achieved. 
 
5. Results and evaluations 
Performance evaluation of the proposed 
system and its robust success against state-of-
the art method is presented in this section. 
Algorithmic parameters of the metaheuristic 
methods used within the proposed multi-
heuristic system are given in Table 1. All of 
the parameters in Table 1 are collected from 
well-known conventional implementations of 
the corresponding metaheuristic algorithms. 
Implementation of the proposed system is 
carried out using Matlab® programming 
language environment. 
 
Table 1 Algorithmic parameters of the metaheuristic methods 

used within the proposed system. 
  Metaheuristic                     Algorithm Parameters 
    
     MOPSO                  |Pop| = 75,         C1=2.0,         C2=2.0,               
                                     ωmax=0.9,          ωmin=0.4 
    
     MODE                    |Pop| = 75, Scaling_Factor=0.5, PC =0.7             
    
     SPEA2                    |Pop| = 75, PC =0.9, Pm=1.0/Num_Vars,           
                                                  Distribution_Index=20 
    
     NSGAII                  |Pop| = 75,     PC =0.9, Pm=1.0/ Num_Vars,          
                                                  Distribution_Index=20, 

 
Similar to Bahlouli et al. [16], 250 generations 
are considered totally for all metaheuristics 
and the population size for each metaheuristic 
is totally 300 individuals as 75 each. 
Meanwhile, the ranges of the input parameters 
used in the optimization process are listed in 
Table 2. 
 
 
 
 
 

Table 2 The design parameters range in optimization 
                 Parameter                                Range 
 
       𝑃𝑖𝑖,   𝐴𝐴𝐴 𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑏𝑏𝑏)              15-30 
                   𝑇𝐺𝐺(𝑘)                           420-440 
                      𝑋𝑏                                    0.34-0.4 
                 ∆𝑇𝑝𝑝(𝐾)                          10-20 
                      ɳ𝑇                                0.7-0.9 
 
 
In the optimization problem of the cycle, two 
objectives are selected namely: the exergy 
efficiency  ɳ𝐼𝐼,𝐴𝐴𝐴𝐴  and the sum of the unit 
costs of the system products 𝐶𝑝,𝑡𝑡𝑡. The goal of 
the optimization is the maximization of the 
exergy efficiency and minimization of the 
second objective. 
Figure 3 shows the plot of computed Pareto 
front extracted by MHS for two-objective test 
problem including 500 non-dominated 
solutions. 
 

 
Fig. 3. The Pareto-Front extracted by MHS. 

Also, Figure 4 illustrates the plots of best 
computed Pareto-Front obtained by MHS 
against the Pareto-Front extracted by Bahlouli 
et al. published in [16]. In ref. [16] since 
increasing the exergy efficiency from 36% to 
39% increases the cost rate of product 
insignificantly, point B with the exergy 
efficiency of 39.16% and the sum of the unit 
cost of the products 25.97$/GJ had been 
selected as final optimize point. With the 
same reason, point A with the exergy 
efficiency of 39.37% and the sum of the unit 
cost of the products 25.85$/GJ is selected as 
final optimum point in this work. 
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Fig. 4. The Pareto-Front extracted by MHS and 

previous work. 

Table 3 shows all the design parameters and 
thermodynamic characteristics of three 
different points namely, base point, point B of 
multi-objective optimization strategy using 
NSGA-II and point A of multi-objective 
optimization strategy using the proposed 
multi-heuristic system (MHS) in current work. 
A companion between the results for point A 
with point B reveals that the proposed multi-
heuristic system has better capability in 
improving both exergy efficiency and the sum 
of unit costs of the system products compared 
to the NSGA-II. The increase in exergy 
efficiency by employing MHS in optimization 
process is about 0.56 percent greater than the 
use of NSGA-II. Also, it is about 0.45 percent 
effective in the reduction in the sum of unit 
costs of the system products  compared to 
NSGA-II method. 
 
Table 4. Comparison of base and optimization results of the  
                    parameters for the combined cycle 
Design parameter          Base              Optimized           Optimized 
                                                         (NSGA-II)         (MHS) 
                                                    Point B (ref. [16]      Point A 
Pin,AWM Turbine (bar)        20                29.89              32.00 
TGen (K)                            430              420.2              420.00 
Xb                                      0.4                0.342              0.34 
ΔTPinch(K)                        15                 10.01              10.00 
ηT                                       0.85              0.90                0.90 
ηP                                       0.70               0.70               0.70 
Performance of the AWCC                                                                                   
 
Exergy efficiency (%)       22.8144 39.1596        39.3708 
 
Unit costs of the system 
 products ($/GJ)                 28.89 25.9721        25.8553 
 
         
The IGD (Inverted Generational Distance) 
metric is used to calculate the distance 
between two competitive algorithms [21]. 

This metric measures both convergence and 
diversity.  
Let PF1 is a set of non-dominated solutions in 
Pareto front found by MHS and PF2 is the set 
of non-dominated solutions in the Pareto-
Front discovered by Bahlouli et al. [16]. 
    
                 𝐼𝐼𝐼 =  ∑ 𝑑(𝑣,𝑥)𝑣∈𝑃𝑃1,   𝑥∈𝑃𝑃2

|𝑃𝑃1|
   (1) 

 
d(v,x) denotes the minimum Euclidean 
distance between the points v and x. The IGD 
value for figure 4 is calculated as 74.134 
which shows that there is significant distance 
between two Pareto-Fronts and they are far 
from each other. 
The scattered distributions of design variables 
are displayed in Figure 5 to get insight on 
these variables. The trends of results are in 
consistence with the reported results in ref. 
[16]. It can be seen from this figure that while 
AWMT inlet pressure and AWMT isentropic 
efficiency (Figures 5a and  5e) have tendency 
of being highest values, this trend is vice versa 
for ammonia mass fraction in basic solution 
and generator temperature (Figures 5b and 
5c). These information shows that an increase 
and decrease in these design variables will 
cause to better optimization result, 
respectively. For instance, an increase in 
AWMT inlet pressure leads exergy efficiency 
to be increased and sum of the unit cost of the 
products for the system to be decreased. 
However, Figure 5d shows that this is not the 
case for pinch point temperature difference 
and this variable has a scattered distributions. 
This observation suggests that the pinch point 
temperature difference has a significant role 
for exergy efficiency and total cost rate trade-
off. 
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Fig. 5. The Pareto-Front extracted by MHS and 
previous work. 

 
6.         Conclusions and future works 
This study presents a new approach to design 
a cooperative multi-heuristic system for the 
solution of ammonia-water power/cooling 
cycle coupled with an HCCI engine. In the 
proposed method, a number of metaheuristics 
are implemented as individual search 
technique. The global population is divided 
into subpopulations randomly each 
subpopulation is optimized by an assigned 
metaheuristic. The results reveal that 
implementing the proposed method improves 
both exergy efficiency and the sum of the unit 
costs of the system products compared to the 
previous study by Bahlouli et al. [16]. Further 
research is planned to extend the proposed 
MHS with additional MOO agents and 
consider its use for practical real-valued 
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problems in mechanical engineering and 
energy systems.  
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