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REFERENCE NO  ABSTRACT 

PCEL-01  In recent years, clean and renewable energy generation has drawn significant 
attention. Among different renewable energy sources, solar energy is one of 
the most promising due to readily availability, low maintenance cost and 
zero pollution. In order to optimize the performance of solar systems, 
parameters of solar photovoltaic (PV) cells should be identified accurately. 
Parameter identification refers to the process of extracting the electrical 
parameters of the PV cells from measured Current vs. Voltage (𝐼 − 𝑉) 
curves with minimum prediction error, which is called as solar cell 
parameter identification problem (SCPIP). This paper introduces a 
comparative analysis of four different physics-inspired meta-heuristics 
algorithms on SCPIP. In this context, Electromagnetic Field Optimization 
algorithm, Electromagnetism-like Algorithm, Gravitational Search 
Algorithm, and Weighted Superposition Attraction algorithm are taken into 
account. In computational studies, tests with each algorithm are carried out 
on a well-known benchmark data set. Results of the computational studies 
reveal that Electromagnetic Field Optimization algorithm outperforms other 
three competitor algorithms. 
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1. INTRODUCTION 
Renewable energy has experienced a 
tremendous increase in recent decades 
because of the depletion of conventional 
sources like oil, coal or natural gas. Among 
various kinds of renewable energy sources, 
solar energy is the most important source due 
to its properties such as environmental-
friendly, unlimited capacity and wide-scale 
availability, little maintenance, noise-free and, 
easy installation [1]. Solar energy is converted 
into electrical energy through photovoltaic 
(PV) systems such as solar cell. Solar cell 
modelling primarily involves the formulation 
of the non-linear relationship between current 
and voltage using the 𝐼 − 𝑉 curve [2]. Within 
wide variety of models, two solar cell models 
widely used in real world: the single and 
double diode models. The single diode model 
has five unknown parameters and the double 
diode model has seven unknown parameters. 
Accurate determination of those parameters, 
which are usually not provided by 
manufacturers, is vital for solar cell 
performance optimization. The SCPIP covers 
the identification of the optimal parameter 

values for a given 𝐼 − 𝑉 curve dataset with a 
minimum prediction error.  
To solve the SCPIP, there exist several 
solution approaches in the literature, which 
are mainly divided into two groups: 
deterministic and heuristic solution 
approaches. Regarding the deterministic 
approaches, a number of methods are 
employed by the researchers, such as, 
nonlinear least-squares based on the Newton 
model [3], iterative curve fitting [4], Lambert 
W-function [5], 𝐽 − 𝑉 model [6], etc. 
However, these deterministic solution 
approaches are not efficient to solve SCPIP 
since they need continuity, convexity and 
differentiability conditions for being 
applicable and involve heavy computations [1, 
7]. To cope with the complexity of the SCPIP, 
heuristic methods are used as an alternative to 
deterministic solution approaches. 
Regarding the popular meta-heuristic 
algorithms, such as, simulated annealing 
algorithm [8], genetic algorithm [9, 10], 
particle swarm optimization algorithm [11], 
differential evolution algorithm [12-14], 
artificial bee colony algorithm [15], are 
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widely used for the SCPIP. In addition to 
these well-known heuristic algorithms, there 
exist several papers in the literature which 
consider more recent approaches, such as, 
bacterial foraging algorithm [16, 17], teaching 
learning-based optimization algorithm [18-
20], biogeography-based optimization 
algorithm [21], bird mating optimizer 
approach [22], artificial immune system [23], 
cat swarm optimization algorithm [24], moth-
flame optimization algorithm [25], JAYA 
optimization algorithm [2], chaotic whale 
optimization algorithm [26]. 
This study presents a comparative 
performance assessment of well-known 
physics-inspired meta-heuristic algorithms i.e. 
Electromagnetic Field Optimization (EFO), 
Electromagnetism-like Algorithm (EMA), 
Gravitational Search Algorithm (GSA), and 
Weighted Superposition Attraction algorithm 
(WSA) on single diode SCPIP. In order to 
compare the algorithms objectively, identical 
test environments, population sizes and, 
stopping conditions were employed. 
Furthermore, the control parameters of the 
algorithms are set to their original values 
given in their corresponding papers. 
Computational results show that the EFO 
achieves a superior performance to other 
competitor algorithms. 
The rest of the paper is organized as follows. 
Section 2 describes the SCPIP considering 
single diode model. The considered physics-
inspired meta-heuristic algorithms are 
presented in Section 3. Computational results 
are given in Section 4. Finally, conclusions 
with future research perspectives are given in 
Section 5. 
 
2. PROBLEM DEFINITION 
In order to describe the 𝐼 − 𝑉 characteristics 
of the solar cells, there exist several models in 
the literature. In this study, only the single 
diode model is taken into account since this 
model is much more common compared to the 
double diode model [1].  
Fig. 1 represents the equivalent circuit for the 
single diode model, where 𝑉𝑡 is the terminal 
voltage, 𝑅𝑠 is the series resistance, 𝑅𝑠ℎ is the 
shunt resistance, 𝐼𝑡 is the terminal current, 𝐼𝑝ℎ 

is the photo-generated current, 𝐼𝑠𝑠is the diode 
current, and 𝐼𝑠ℎ is the shunt resistor current. 
By using the Shockley equation for the diodes 
currents, the single diode model can be 
formulated as shown in Eq. 1 [15, 20, 26]. 
According to the Shockley equation, 𝑞 is the 
magnitude of charge on an electron 
(1.60217646 × 10−19 coulombs), 𝑘 is the 
Boltzmann constant (1.3806503 × 10−23 𝐽/
𝐾), and 𝑇 is the cell temperature in Kelvin 
[15]. 
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Fig. 1. Single diode model of solar cells [7, 20] 

 
Regarding the single diode model described 
above, the SCPIP can be defined as 
identifying the parameters of Eq. 1 within 
their lower and upper bounds. The aim of the 
problem is to estimate the best parameter 
values for the single diode model that produce 
an accurate approximation between the 𝐼 − 𝑉 
measurements from the physical experiments 
and values from the mathematical model. 
Hence, the Eq. 1 can be rewritten as an error 
function as shown in Eq. 2. 
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In the sense of optimization problem for 
accurate estimation, the error function for the 
SCPIP can be transformed to the Eq. 3 by 
using a decision variable vector 𝑿, where 
Table 1 shows the descriptions of the decision 
variables and their lower and upper bounds. 
 
𝑓(𝑉𝑡, 𝐼𝑡,𝑿) = 𝐼𝑡 − 𝑒3 
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𝑒5.𝑘.𝑇
� − 1�    

+ �
𝑉𝑡 + 𝑒1. 𝐼𝑡

𝑒2
�                            (3) 

 
Table 1. Lower and upper bounds of the solar cell 

parameters 

Parameters of Single 
Diode Model 

Decision Variable 
Vector 𝑿 

Lover 
Bound 

Upper 
Bound 

𝑅𝑠(Ω) 𝑒1 0 0.5 
𝑅𝑠ℎ(Ω) 𝑒2 0 100 
𝐼𝑝ℎ(𝐴) 𝑒3 0 1 
𝐼𝑠𝑠(𝜇𝐴) 𝑒4 0 1 

𝑛 𝑒5 1 2 
 
For a number of experimental data for a single 
diodes, the mathematical model formulation 
of the SCPIP can be defined as follows: 
 
𝑀𝑀𝑛 𝑍 = 𝑅𝑀𝑅𝑅(𝑿)                                         (4) 

Subject to 

0 ≤ 𝑒1 ≤ 0.5                                                             (5) 

0 ≤ 𝑒2 ≤ 100                                                           (6) 

0 ≤ 𝑒3 ≤ 1                                                                (7) 

0 ≤ 𝑒4 ≤ 1                                                                (8) 

1 ≤ 𝑒5 ≤ 2                                                                (9) 

𝑒1,𝑒2, 𝑒3,𝑒4,𝑒5 ≥ 0                                             (10) 
 
The objective function (4) aims to minimize 
RMSE (root mean square error) of the 
experimental, which is determined by using 
the Eq. 11 for a number of experiments, 𝑀. 
The constraints (5)-(9) describe the 
boundaries of the decision variables. Finally, 
the decision variables are described in 
constraint (10). 
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1
𝑀
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                       (11) 

 
3. PHYSICS-INSPIRED META-
HEURISTIC ALGORITHMS 
This section covers the basics of the physics-
inspired meta-heuristic algorithms, which are 
investigated. 
 
3.1. Electromagnetic Field Optimization 
Algorithm 
The EFO is a population based meta-heuristic 
algorithm inspired by the electromagnets 
behaviour [27]. In EFO, a solution is 
represented by electromagnetic particle 
(EMP) made of electromagnets and the 
number of electromagnets is equal to the 
number of variables in the optimization 
problem. Different from permanent magnets, 
each electromagnet in EMP has same single 
polarity (positive or negative) and each 
electromagnet can apply a force of attraction 
or repulsion among other neighbour 
electromagnets. The main steps of the EFA 
can be described as follows: 
 

Step 1. Generate an initial population of 
N electromagnetic particles, 𝑒𝑗𝑖, 𝑀 = 1 …𝑁, 𝑗 =
1 …𝐷 where 𝑒 is the electromagnetic particle, 
𝑁 is the population size and 𝐷 is the problem 
size. 

 
Step 2. Calculate the objective value of 

each electromagnetic particle 𝑀 𝑓(𝑒𝑖) and sort 
the population according to the objective 
values descending. 

 
Step 3. Divide the population into three 

groups. The first group is called the positive 
field, which contains better EMP’s having 
positive polarity. The second group includes 
the worst EMP’s with negative polarity. The 
third group called neutral field having the 
EMP’s in between positive and negative 
fields. 

 
Step 4. Select one EMP from each group 

randomly. 



 
Step 5. The 𝑗𝑡ℎ index of the new EMP is 

copied directly from positive field EMP, if 
𝑟𝑟𝑛𝑑(0,1)  <  𝑒𝑠_𝑟𝑟𝑡𝑒 where 𝑟𝑟𝑛𝑑(0,1) is a 
random number between 0 and 1, 𝑒𝑠_𝑟𝑟𝑡𝑒 is a 
control parameter. Else, the 𝑗𝑡ℎ index of the 
new particle is generated by using Eq. 12. 

 
𝑒𝑗𝑛𝑛𝑛 = 𝑒𝑖𝑛 + (𝜌 ∗ 𝑟)�𝑒𝑗

𝑝 − 𝑒𝑗𝑛� 
−𝑟 ∗ �𝑒𝑗𝑘 − 𝑒𝑗𝑛�   (12) 

 
where 𝑒, 𝑘 and 𝑛 are the selected positive, 
neutral and negative polarity EMP’s 
respectively. 𝑟 is a random number in the 
interval of [0, 1] and 𝜌 is the golden ratio. 
Step 5 is repeated for each index of the new 
particle. 
 

Step 6. If 𝑟_𝑟𝑟𝑡𝑒 <  𝑟𝑟𝑛𝑑(0,1) then one 
electromagnet of the new EMP is replaced by 
a new randomly generated one. Here, 𝑟_𝑟𝑟𝑡𝑒 
is a control parameter. 

 
Step 7. If the new EMP is better than the 

worst EMP in the current population, the new 
particle substitutes it and the population is 
sorted again. Steps 3-7 are repeated until a 
stopping condition is met. 

 
3.2. Electromagnetism-Like Algorithm 
The EMA is a population-based meta-
heuristic algorithm proposed by [28] and 
simulates the electromagnetism theory, in 
which charged particles exert an attraction or 
repulsion forces on each other. In EMA, a 
solution is associated with a charged particle 
in a multi-dimensional space, 𝑒𝑖𝑗, 𝑀 =
 1, . . . ,𝑁 and 𝑗 =  1, … ,𝐷, where 𝑁 and 𝐷 are 
the population size and problem dimension 
respectively. The charge of each particle 𝑒i 
depends on the quality of the fitness value 
𝑓(𝑒𝑖). In EMA, each particle exerts a 
repulsion or attraction force on other 
population members according to the charges 
they carry. The results force 𝐹𝑖 is determined 
by the sum of all forces on particle 𝑀 and is 
moved in the direction of 𝐹𝑖. The idea of 
EMA is that, better particles will attract and 

worse particle will repel. The main steps of 
the algorithm are as follows: 
 

Step 1. Generate an initial population of 
𝑁 particles, 𝑒𝑗𝑖, 𝑀 = 1 …𝑁, 𝑗 = 1 …𝐷 where 𝑒 
is the particle, 𝑁 is the population size and 𝐷 
is the problem size. 

 
Step 2. Calculate the fitness of the 

population and the charges of each particle, 𝑞𝑖 
by using Eq. 13. 

 

𝑞𝑖 = 𝑒𝑒𝑒 �−𝐷
𝑓�𝑒𝑖� − 𝑓(𝑒𝑏𝑛𝑠𝑡)

∑ 𝑓(𝑒𝑘) − 𝑓(𝑒𝑏𝑛𝑠𝑡)𝑁
𝑘=1

�  (13) 

 
where 𝑒𝑏𝑛𝑠𝑡 denotes the best particle in the 
current population. 
 

Step 3. Calculate the resulting forces on 
particles for a minimization problem by using 
the Eq. 14 if 𝑓(𝑒𝑘) < 𝑓𝑒𝑖), and Eq. 15 
otherwise. 
 

𝐹𝑖 = � 𝑒𝑘 − 𝑒𝑖
𝑞𝑘𝑞𝑖

‖𝑒𝑘 − 𝑒𝑖‖

𝑁

𝑘=1,𝑘≠𝑖

                 (14) 

 

𝐹𝑖 = � 𝑒𝑖 − 𝑒𝑘
𝑞𝑘𝑞𝑖

‖𝑒𝑘 − 𝑒𝑖‖

𝑁

𝑘=1,𝑘≠𝑖

                 (15) 

 
Step 4. After calculating the total force, 

re-position the particle as Eq. 16. 
 

𝑒𝑖 = 𝑒𝑖 + 𝑟𝑟𝑛𝑑(0,1) ∗
𝐹𝑖

‖𝐹𝑖‖
                      (16) 

 
Step 5. Repeat Steps 2-5 until a pre-

defined stopping condition is met. 
 

3.3. Gravitational Search Algorithm 
The GSA is a physics inspired meta-heuristic 
algorithm, which is based on the Newtonian 
laws of gravitation and motion [29]. In GSA 
each solution is represented by particles and 
has properties as position, active gravitational 
mass, passive gravitational mass and inertial 
mass where the position corresponds to the 
solution. Moreover, the gravitational masses 



and inertial mass is proportional to the fitness 
value. The key idea behind the GSA is that 
each particle attracts every other particle and 
heavier or better particles attracts more. The 
basic steps of the GSA are as follows: 
 

Step 1. Generate an initial population 
randomly. The 𝑗𝑡ℎ index of particle 𝑀 is 
denoted by 𝑒𝑖

𝑗 , 𝑀 = 1, … ,𝑁, 𝑗 =  1, … ,𝐷 
where 𝑁 is the population size and 𝐷 is the 
number of variables in the optimization 
problem. 

 
Step 2. Determine the fitness of the 

population.  
 
Step 3. Determine the force that acts on 

the 𝑗𝑡ℎ index of the particle 𝑀 by using Eq. 17. 
 

𝐹𝑖
𝑗 = � 𝑟𝑟𝑛𝑑(0,1) ∗ 𝐹𝑖𝑘

𝑗

𝑗=1,𝑗≠𝑖

                      (17) 

 
where 𝑟𝑟𝑛𝑑(0,1) is a random number in the 
interval [0, 1], and the force exerted by 
particle 𝑘 on 𝑀 for the𝑗𝑡ℎ index, the 
determination of 𝐹𝑖𝑘

𝑗  is given in Eq. 18: 
 

𝐹𝑖𝑘
𝑗 = 𝐺 ∗

𝑀𝑖 ∗ 𝑀𝑗
𝑟𝑖𝑘 + 𝜖

�𝑒𝑘
𝑗 − 𝑒𝑖

𝑗�                       (18) 
 
where 𝜖 is a constant, 𝑀𝑖 and 𝑀𝑗 are the 
masses of particle 𝑀 and 𝑗 respectively. 𝐺 is the 
gravitational constant. The mass of the 
particle 𝑀, 𝑀𝑖 is calculated  by using Eq. 19 
where 𝑚𝑖 = 𝑓(𝑥𝑖)−𝑓(𝑥𝑏𝑏𝑏𝑏)

𝑓(𝑥𝑏𝑏𝑏𝑏)−𝑓(𝑥𝑤𝑤𝑤𝑏𝑏)
. 

 
𝑀𝑖 = 𝑚𝑖

∑ 𝑚𝑘
𝑁
𝑘=1

�                                          (19) 

 
Step 4. Determine the acceleration of the 

particle in 𝑗𝑡ℎ dimension as:  𝑟𝑖
𝑗 = 𝐹𝑖

𝑗

𝑀𝑖
 

 
Step 5. Re-position the particle 𝑀 by mean 

of acceleration, as: 𝑣𝑖
𝑗 = 𝑟𝑟𝑛𝑑(0,1) ∗ 𝑣𝑖

𝑗 + 𝑟𝑖
𝑗 

and 𝑒𝑖
𝑗 = 𝑒𝑖

𝑗 + 𝑣𝑖
𝑗. 

 

Step 6. Repeat the step 3-5 until any 
stopping criteria is met. 
 
3.4. Weighted Superposition Attraction 
Algorithm 
Baykasoğlu and Akpinar [30] proposed the 
WSA, which adopts the superposition 
principle in combination with the attracted 
movements of agents. In WSA each solution 
is represented by an agent 𝑒𝑖 where 𝑀 =
1, … ,𝑁 and 𝑁 is the population size. WSA 
determines searching directions of the agents 
by realizing combined superposition with 
attraction motions of agents through a 
neighbour generation mechanism [31]. The 
main steps of the WSA are given as below: 
 

Step 1. Generate an initial population 
randomly. The 𝑗𝑡ℎh index of particle 𝑀 is 
denoted by 𝑒𝑖𝑗, 𝑀 = 1, … ,𝑁, 𝑗 =  1, … ,𝐷 
where 𝑁 is the population size and 𝐷 is the 
number of variables in the optimization 
problem. 

 
Step 2. Determine the fitness of the 

population. 
 
Step 3. Sort the population according to 

the fitness values. 
 
Step 4. Calculate the weight of each agent 

using the rank 𝑀 as 𝑤𝑖 = 𝑀−𝜏 where 𝜏 is a 
control parameter of the algorithm. 

 
Step 5. Determine the target point that the 

agents will move towards. The target point is 
calculated as 𝑡𝑟𝑟𝑡𝑒𝑡𝑗 = ∑ 𝑒𝑖𝑗 ∗ 𝑤𝑖

𝑁
𝑖=1 . 

 
Step 6. Calculate the fitness of the target 

point, 𝑡𝑟𝑟𝑡𝑒𝑡. 
 
Step 7. Determine the direction (𝑑𝑀𝑟𝑒𝑑𝑡𝑖) 

of agent 𝑀 by using the position (𝑡𝑟𝑟𝑡𝑒𝑡) and 
fitness value (𝑓(𝑒𝑡𝑡𝑡𝑡𝑛𝑡)) of the target point. 

 
Step 8. Update the position of each 

particle by 𝑒𝑖 = 𝑒𝑖 + 𝑠𝑠 ∗ 𝑑𝑀𝑟𝑒𝑑𝑡𝑖 ∗ 𝑟𝑎𝑠(𝑒𝑖) 
where 𝑠𝑠 is an adaptive control parameter and 
𝑟𝑎𝑠 is the absolute value function. 

 



Step 9. Repeat the Steps 3-8 until a 
stopping condition is met. 

 
3.5. Conceptual Comparison of EFO, EMA, 
GSA and WSA 
EMA and EFO are meta-heuristic algorithms 
based on classical electromagnetic theory, 
whereas GSA is inspired from gravitational 
theory and WSA is based on superposition 
principle. In WSA, GSA and EMA a general 
resultant force is determined and each 
solution’s position is updated according to the 
direction of the resultant force. On the other 
hand, EFO uses an intelligent EMP selection 
mechanism and new solutions are constructed 
using those selected solutions. All algorithms 
employ similar random components i.e. 
random step length or random mutation in 
order to enhance the exploration behaviour. 
Only EFO uses a greedy selection procedure 
in which candidate solutions that are worse 
than the worst solution in the current 
population are destroyed and not accepted. 
WSA, GSA and EMA exploit the information 
of the better solutions by giving more weight 
to those solutions. Instead, EFO employs 
direct information sharing by selection 
solution from positive field for each candidate 
generation.  
 
4. COMPUTATIONAL RESULTS 
 
4.1. Parameter Settings and Experimental 
Setup 
Parameter settings of the algorithms may have 
a great influence on the performance. In 
general, the parameters of the algorithms are 
set to their original values given in their 
corresponding papers.  
In order to compare algorithms objectively, 
population sizes are set to 50 for all 
algorithms and a 30 seconds CPU time is 
taken as the stopping criteria. For the EFO, 
the positive field is set to 10% of the total 
population, whereas negative field is taken as 
45% (𝑒_𝑓𝑀𝑒𝑠𝑑 = 0.10, 𝑛_𝑓𝑀𝑒𝑠𝑑 = 0.45). 
Further, 𝑒𝑠_𝑟𝑟𝑡𝑒 and 𝑟_𝑟𝑟𝑡𝑒 are set as 0.2 and 
0.3, respectively as given in [27]. For EMA, 
the only parameter is the population size and 
set to 50 as aforementioned. For GSA, 𝐺0 and 

𝛼 are set to 100 and 20, respectively. 𝐾0 is set 
to the population size [29]. For WSA, the 
control parameters 𝜏, 𝑠𝑠0, 𝜑, and 𝜆 are taken 
as 0.8, 0.035, 0.001 and 0.75, respectively 
[30]. 
All experiments were implemented in 
MATLAB 8.1 and executed on the same 
computer with Intel Xeon CPU (2.67 GHz) 
and 16 GB of memory. Further, all algorithms 
have been run 30 times with random seeds 
and the results are reported accordingly. It 
should be noted here that all calculations have 
been carried out on six decimal point base.  
 
4.2. Benchmark problems 
In order to investigate the effectiveness of the 
proposed algorithms, the standard 𝐼 − 𝑉 
dataset for a single diode cell from [3] is 
adopted. The dataset contains 26 samples and 
data has been achieved from the system under 
1 sun (1000 𝑊/𝑚2) at 33℃, where a 
commercial silicon solar cell (from the R.T.C. 
Company of France) with a diameter of 57 
mm was used.  
 
4.3. Computational Results 
The best results out of 30 runs for each 
benchmark problem in terms of  
𝑓(𝑉𝑡, 𝐼𝑡,𝑿) (𝐼𝑡𝑀 − 𝐼𝑡𝐶) are listed in Table 2. In 
Table 2, the best results for each data point are 
given in bold. From this table, it can be 
observed that EFO and EMA achieve similar 
results and outperform GSA and WSA. Both 
EFO and EMA obtain the best results on 13 
cases out of 26.  
In addition to the detailed results given in 
Table 2, the parameter values and RMSE for 
the best runs and the mean RMSE values over 
30 runs are tabulated in Table 3. From Table 
3, it can be seen that EFO is the best 
performing algorithm with a RMSE value of 
9.860219E-04 and a mean RMSE of 9.86E-
04. The mean RMSE values that are obtained 
by EMA, GSA and WSA are 1.04E-03, 
3.63E-03 and 1.43E-01, respectively. On the 
other hand, the achieved parameter values are 
𝑅𝑠=0.036377, 𝑅𝑠ℎ = 53.718646, 𝐼𝑝ℎ =
0.760776, 𝐼𝑠𝑠 = 0.323022  and 𝑛 =
1.481184 for the best run with EFO. 
  



Table 2. Terminal (𝑉𝑡 − 𝐼𝑡) measurements and error values for the single diode model 

Data 𝑉𝑡𝑀(𝑉)  𝐼𝑡𝑀(𝐴)  
EFO  EMA  GSA  WSA 

𝐼𝑡𝐶(𝐴) 𝑓(𝑉𝑡 , 𝐼𝑡 ,𝑿) 𝐼𝑡𝐶(𝐴) 𝑓(𝑉𝑡 , 𝐼𝑡 ,𝑿) 𝐼𝑡𝐶(𝐴) 𝑓(𝑉𝑡 , 𝐼𝑡 ,𝑿) 𝐼𝑡𝐶(𝐴) 𝑓(𝑉𝑡 , 𝐼𝑡 ,𝑿) 
1 -0.2057 0.764000 0.764088 -0.000088  0.763710 0.000290  0.763163 0.000837  0.756338 0.007662 
2 -0.1291 0.762000 0.762663 -0.000663  0.762368 -0.000368  0.762240 -0.000240  0.755556 0.006444 
3 -0.0588 0.760500 0.761355 -0.000855  0.761136 -0.000636  0.761392 -0.000892  0.754838 0.005662 
4 0.0057 0.760500 0.760154 0.000346  0.760004 0.000496  0.760612 -0.000112  0.754177 0.006323 
5 0.0646 0.760000 0.759055 0.000945  0.758969 0.001031  0.759896 0.000104  0.753570 0.006430 
6 0.1185 0.759000 0.758042 0.000958  0.758014 0.000986  0.759227 -0.000227  0.753000 0.006000 
7 0.1678 0.757000 0.757092 -0.000092  0.757116 -0.000116  0.758575 -0.001575  0.752437 0.004563 
8 0.2132 0.757000 0.756141 0.000859  0.756214 0.000786  0.757863 -0.000863  0.751808 0.005192 
9 0.2545 0.755500 0.755087 0.000413  0.755201 0.000299  0.756948 -0.001448  0.750972 0.004528 

10 0.2924 0.754000 0.753664 0.000336  0.753814 0.000186  0.755512 -0.001512  0.749625 0.004375 
11 0.3269 0.750500 0.751391 -0.000891  0.751567 -0.001067  0.753000 -0.002500  0.747240 0.003260 
12 0.3585 0.746500 0.747354 -0.000854  0.747545 -0.001045  0.748420 -0.001920  0.742886 0.003614 
13 0.3873 0.738500 0.740117 -0.001617  0.740308 -0.001808  0.740302 -0.001802  0.735194 0.003306 
14 0.4137 0.728000 0.727382 0.000618  0.727554 0.000446  0.726395 0.001605  0.722084 0.005916 
15 0.4373 0.706500 0.706973 -0.000473  0.707109 -0.000609  0.704740 0.001760  0.701729 0.004771 
16 0.4590 0.675500 0.675280 0.000220  0.675365 0.000135  0.672021 0.003479  0.671023 0.004477 
17 0.4784 0.632000 0.630758 0.001242  0.630783 0.001217  0.627069 0.004931  0.628771 0.003229 
18 0.4960 0.573000 0.571928 0.001072  0.571895 0.001105  0.568594 0.004406  0.573517 -0.000517 
19 0.5119 0.499000 0.499607 -0.000607  0.499524 -0.000524  0.497362 0.001638  0.505601 -0.006601 
20 0.5265 0.413000 0.413649 -0.000649  0.413532 -0.000532  0.413061 -0.000061  0.424327 -0.011327 
21 0.5398 0.316500 0.317510 -0.001010  0.317378 -0.000878  0.318644 -0.002144  0.331990 -0.015490 
22 0.5521 0.212000 0.212155 -0.000155  0.212028 -0.000028  0.214664 -0.002664  0.228690 -0.016690 
23 0.5633 0.103500 0.102251 0.001249  0.102148 0.001352  0.105277 -0.001777  0.118134 -0.014634 
24 0.5736 -0.010000 -0.008718 -0.001282  -0.008783 -0.001217  -0.006694 -0.003306  0.002643 -0.012643 
25 0.5833 -0.123000 -0.125507 0.002507  -0.125520 0.002520  -0.125585 0.002585  -0.121856 -0.001144 
26 0.5900 -0.210000 -0.208472 -0.001528  -0.208442 -0.001558  -0.211710 0.001710  -0.214073 0.004073 

    𝑉𝑡𝑀: Measured terminal voltage   𝐼𝑡𝑀: Measured terminal current   𝐼𝑡𝐶: Calculated terminal current 
 

Table 3. Comparison of the results for the single diode model 

Item EFO EMA GSA WSA 
𝑒1:𝑅𝑠(Ω) 0.036377 0.036365 0.032130 0.027957 
𝑒2:𝑅𝑠ℎ(Ω) 53.718646 57.025188 82.871489 97.854073 
𝑒3: 𝐼𝑝ℎ(𝐴) 0.760776 0.760590 0.760977 0.754454 
𝑒4: 𝐼𝑠𝑠(𝜇𝐴) 0.323022 0.329155 0.847206 1.000000 
𝑒5:𝑛 1.481184 1.483019 1.585214 1.607072 
𝑅𝑀𝑅𝑅 9.860219E-04 9.972880E-04 2.166195E-03 7.702232E-03 
Mean 9.86E-04 1.04E-03 3.63E-03 1.43E-01 

 
5. CONCLUSIONS 
In this study, four different and well-known 
physics-inspired meta-heuristic algorithms are 
compared to identify their performances for 
the parameter estimation of photovoltaic cells. 
To compare the algorithms, a well-known 
benchmark data set introduced for a single 
diode model is used. In order to make a fair 
comparison, the initial forms of the algorithms 
are taken into account. Moreover, the stopping 
criterion of each algorithm is set to a 
maximum time limit of 30 seconds and the 
population sizes are taken as 50. As a result of 
the computations, the best found RMSE 

values obtained by the algorithms show that 
the EFO shows better performance and 
outperforms other three meta-heuristic 
algorithms by estimating the solar cell 
parameters with lower RMSE value. 
Since this paper is the first study that 
considers the physics-inspired meta-heuristic 
algorithms for the SCPIP, this research can be 
extended with the following perspectives. In 
addition to the single diode model, the 
performance of the algorithms on the double 
diode model can be analysed. Another 
extension on the paper can be done by 
considering additional physics-inspired meta-



heuristic algorithms. On the other hand, the 
performance of the meta-heuristic algorithms 
are sensitive to the control parameters of the 
algorithms. Therefore, parametric analysis for 
each algorithm may be carried out. Finally, 
the original versions of the algorithms can be 
improved to obtain more efficient and 
effective results for the SCPIP. 
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